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SUMMARY 

A time-marching finite volume numerical procedure is presented for three-dimensional Euler analysis of 
turbomachinery flows. The proposed scheme is applied to  the conservative form of the Euler equations 
written in general curvilinear co-ordinates. A simple but computationally efficient grid is constructed. 
Numerical solution results for three 3D turbine cascade flows have been presented and compared with 
available measurements as well as with another state-of-the-art 3D Euler analysis numerical solution in 
order to demonstrate the accuracy and computational efficiency of the analysis method. Also, the predicted 
results are compared with a 3D potential flow solver and comparison is made with the analytical solution. 
The proposed method is an accurate and reliable technique for solving the compressible flow equations 
in turbomachinery geometries. 

K E Y  WORDS Turbomachinery blade rows 3D Euler equations Time-marching finite volume method Body-fitted 
co-ordinates 

INTRODUCTION 

The emergence of turbomachines as perhaps the most important means of energy conversion 
and propulsion is an undisputed fact. Turbomachinery development has been largely conditioned 
by the improvements achieved in component efficiencies. Design and performance estimation of 
compressors and turbines has been based, and will continue to be so, almost completely on the 
understanding of the behaviour of fluid flow passing through the blade rows. However, 
turbomachinery flow passages are very complex geometrically, while the flow displays significant 
unsteady and viscous behaviour. 

In the past several years significant advances have been made in computational fluid dynamics 
applied to turbomachinery flows. Although efficient algorithms are now available to integrate 
the Navier-Stokes equations, this appears to be still a formidable task for purposes of practical 
applications. In the complex turbomachine environment the prediction accuracy of such viscous 
flow calculations is limited by the limitations of turbulence modelling. Mixing length eddy 
viscosity models are by far the most commonly used method.' 

The numerical solution of 3D inviscid, compressible flow equations is of practical interest in 
the design of turbomachinery components. Inviscid flow equations are numerically treated in 
two distinct categories, namely Euler solvers and potential flow solvers. Potential methods do 
not appear to have been widely used for design purposes. Nowadays 3D Euler solvers are well 
developed and are available for routine turbomachinery calculations. Several of these dealing 
with internal and external flows are described by Hirsch.' 
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Euler solvers for 3D turbomachinery flows have been reported as early as 1974 by D e n t ~ n , ~  
who developed an explicit time-marching method. His widely accepted method employs an 
opposed difference scheme in order to solve the 3D Euler equations. The scheme uses upwind 
differencing for fluxes of mass and momenta, but downwind differences for pressures in the 
streamwise direction. In addition, correction factors for each of the physical quantities are applied 
in the streamwise direction. The method is of the finite volume type. Accurate and efficient 3D 
Euler equation numerical solution techniques were presented by Shieh and D e l a n e ~ . ~  The 
hop-scotch scheme was applied to the conservative form of the Euler equations written 
in general curvilinear co-ordinates using an 0-type grid system. Weber et a1.’ presented a 3D 
Euler analysis on a C-type grid using the well-known Beam-Warming implicit algorithm. Results 
for a compressor cascade and rotor flows are presented. Arts6 presented an inviscid flow solution 
for a transonic axial turbine stage. Holmes and Tong’ described a 3D Euler solver for 
turbomachinery blade rows. The algorithm was based on the explicit, four-step, Runge-Kutta 
finite volume method advocated by Jameson. The solver was tested on turbine nozzles, turbine 
rotors, centrifugal compressor rotors, fans and propellers. 

The objective of this paper is to outline an accurate and efficient numerical procedure 
for simulating the time-averaged 3D flow field within a typical cascade of turbomachinery 
blades. The main scope was to calculate flows through all types of turbomachines (axial, mixed, 
radial) no matter how complex their geometry may be. The proposed scheme has several 
advantages: 

1. The grid used is the simplest possible formation for numerical calculations in turbomachin- 
ery blade rows. Leading and trailing edge flow regions do not need special numerical 
treatment. 

2. The conservative form of the equations is written in general curvilinear co-ordinates, thus 
enabling complex geometry turbomachinery blade rows to be efficiently analysed. 

3. The calculated mass flows into and out of the blade row are matched. The net momentum 
flux into the blade rows balances the net pressure force acting on the blade row. The energy 
flux is conserved. 

4. The boundary conditions are easily and accurately satisfied. 
5. The time integration numerical procedure is a straightforward method requiring minimal 

6. Artificial viscosity is provided via a simple pressure correction formula. 
algorithm coding. 

For the time being applications are restricted to stationary blade rows, although the numerical 
algorithm has been developed and presented in this paper to include rotating blade rows. Also, 
the applied test cases refer to the NACA 34 aerofoil section series, thus enabling the calculated 
flow results to be properly evaluated by comparing them with available measurements. Numer- 
ical solution results for three 3D turbomachinery flows, namely a thick-thin-thick aerofoil, a 
thick-thin aerofoil and an inclined aerofoil, are presented and compared with available 
experimental and other numerical data in order to demonstrate the predictive capabilities of the 
method. 

The computer code development was done in the Computation Laboratory of the Fluid 
Mechanics/Hydraulics Division, Civil Engineering Department, Democrition University of 
Thrace during the academic years 1991-1993. Near-future application will include an extension 
of the current code to predict the three-dimensional, viscous flow in hydraulic turbines and 
pumps and eventually the prediction of three-dimensional free surface flows around hydraulic 
structures. 
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GOVERNING FLOW EQUATIONS 

The basic equations governing the flow within the impeller of any turbomachine are derived 
from the principles of conservation of mass, momentum and energy. It is convenient to write 
the 3D Euler equations in a cylindrical polar co-ordinate system (z,  6, r )  which is attached to 
a rotating or stationary blade row. These equations are expressed in conservation form as 

where z ,  6 and r are the axial, tangential and radial directions respectively, t is the time, p is the 
density, u, u and w are the absolute velocity components along 
respectively, p is the pressure of the fluid, SZ is the rotational speed 
total internal energy given by the equation 

the z-, 0- and r-directions 
of the impeller and e is the 

where y is the ratio of the specific heats. The unknowns of the problem are the six physical 
quantities u, u, p, p and e. No assumption is made about the geometry of the blade row, but 
the associated hub and casing surfaces are assumed to be surfaces of revolution. The problem 
must be closed with a complete specification of the boundary conditions. 

Upstream conditions 

The stagnation pressure and temperature of the inlet flow are assumed to be constant 
throughout the flow field; two inlet flow angles must be specified, one for the blade-to-blade 
and the other for the meridional plane. If instead of the inlet flow angles the pitchwise velocity 
and spanwise angle are specified, then blade rows with supersonic inlet flow can be calculated. 

Downstream conditions 

The static pressure is set on the hub surface and the radial pressure distribution is determined 
from the simple radial equilibrium equation 
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Body surface conditions 

blade suction or pressure and/or to the endwall surfaces is zero, i.e. 
In inviscid flow conditions the flow is tangent to a wall surface, so the flow normal to the 

qn = 0. (8) 

In internal flow configuration problems the inherent corner formation between hub or casing 
and suction or pressure surfaces requires special treatment. In turbomachinery flows where highly 
Ioaded blades and curved hub or casing surfaces are frequently encountered, the accurate 
description of the solid boundaries is paramount to obtain satisfactory results. 

Periodical boundaries 

Periodicity conditions are applied to the extensions from the blade surfaces, requiring the 
velocities to be identical at corresponding points of two successive periodic planes. 

COMPLEX GEOMETRY MESH GENERATION 

A complex grid system was developed and implemented on the main numerical method to allow 
cascade flows for blades of variable chord, twist and cross-section to be calculated. An example 
of a complex geometry is shown in Figure 1. Blade cross-sections are read at various radial 
(spanwise) positions. Each input cross-section is obtained from axial, suction surface and blade 
thickness co-ordinates, allowing the blade shape to be properly described. Hub and casing radial 
co-ordinates along the machine axis are also provided as an input to the computer code. Input 
cross-sections are interpolated to calculate the axial, suction surface and blade thickness 

j = 1  axial direction 
k = l  

Figure 1. Intersection of the 3D grid with the meridional plane 
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Figure 2. Intersection of the 3D grid with the blade-to-blade plane 

meridional grid points which are uniformly spaced in the r-direction. For linear cascade 
geometries the hub and tip radii are set to large values such that the difference between them 
is the blade span (height), their ratio being close to unity, while the angular blade distance 2n/N 
( N  is the number of blades in the row) multiplied by the mean span radius yields the cascade 
pitch. 

The calculation of the blade-to-blade grid points containing the tangential and axial variations 
is based on simple interpolations between the blade suction and pressure surfaces. Axial points 
need not be equally spaced. Figure 2 shows the intersection of the 3D grid with the blade-to-blade 
plane. A provision is made for the pitch variation along the radial direction for annular 
cascades. 

The chosen grid is the simplest possible formation for numerical calculations in cascade fluid 
dynamics problems. Use of pitchwise lines greatly simplifies the application of the periodic 
boundary properties between the bounding quasi-streamlines of the blade passage. However, 
the numerical scheme can be used with any grid formation, which need not be uniformly 
spaced in any co-ordinate direction. The grid is not restricted to that shown. Any mesh generation 
technique can be adopted provided that grid periodicity is maintained. Leading and trailing 
edges require special numerical treatment. The problem can be overcome by fitting more grid 
points where appropriate. 

TRANSFORMATION EQUATIONS 

The discrete approximation to the governing flow equation has been developed by dividing the 
physical domain into cuboid cells which can be defined arbitrarily to produce surface-fitted 
grids, the structure of which follows the turbomachinery internal configuration. Once this has 
been achieved, a transformation is introduced through which cuboids of the physical domain 
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Figure 3. Distorted cubes of the physical domain are mapped into cubes of the computational domain 

are mapped into cubes of the computational domain; see Figure 3. The transformation from 
global ( z ,  8, r )  co-ordinates to local (t, q, [) co-ordinates can be expressed as8 

8 8 8 

z = 1 N i z i ,  8 =  1 NiOi, r = Niri ,  (9) 
i = l  i =  1 i =  1 

where N i  are the first-order, linear shape functions associated with the cuboid nodes. The 
use of first-order shape functions has been determined by the necessity to restrict the complexity 
of the numerical code, which is inherent to almost all 3D computational methods. 

Thus, in order to numerically solve the system of governing flow equations (1H6) on a 
body-fitted grid system, the equations are transformed to an arbitrary curvilinear system t ( z ,  6, r), 
q(z, 6, r )  and i(z, 8, r )  using the chain rule:9 
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where U, V and W are the contravariant velocity components in the t-, q- and c-directions 
respectively. The inverse Jacobian J-' of the transformation from the physical to the local 
co-ordinate system is defined as 

The metrics t,, qz and i, of equation (11) are 

5 ,  = (e,,rc - ~, ,Q/J-  l ,  q, = (r& - Ogrc)/J- ', i, = (tlp,, - O,rg)/J-'. 

Similarly the metrics te, qe and ce of equation (12) are 

5 0  = (zcr, - z,,rc)/J- ' 2  119 = (zgrc - zcrg)/J- ', 4'0 = (z,,re - zgr,,)/J- ', (16) 

while the metrics <,, q, and c, of equation (13) are 

5, = (z,,$ - zce,,)/J- ', qr = ( Z c e g  - Z r e r ) / ~ -  l ,  5, = (zgO,, - z,,es)/J- '. 
The contravariant velocities are related to the physical velocities by the equations 

u = 5,u + (t;e/r)(U - rQ) + 5,w, 

V = q,u + (qe/r)(u - rQ) + Vrw, 

W = i,u + (ce/r)(v - ri2) + i , ~ .  
In all the above equations the subscripts z ,  6' and r refer to partial derivatives. 

NUMERICAL ALGORITHM 

For a control volume A V and for a given time step At the transformed governing flow equations 
(10H14) may be written as 

- A(rJ- ' p )  = [A(rJ- 'pU)AqAc + A(rJ-'p v)A(Ac + A(pJ- ' p  W)A<Aq]At/(A<AqAc) (20) 

-A(rJ-'pu) = {A[rJ-'(puU + <g)]AqA[ 
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Figure 4 shows the notation used for flux balancing across a finite volume of the flow field. 
Thus for the massflux an XFLUX at point i , j ,  k is defined as 

(XFLUX)i,j,k = 025[(rJ-'pU)i,j,k + (rJ-lpU)i+ l , j , k  

+ (rJ-'pU)i+l,j.k+ 1 + (rJ-'pU)i,j.k+ 1IAqAC* (25) 

The TFLUX at the same point i, j ,  k is defined as 

(TFLUX)i,j,k = 0.25[(rJ- ' p  V ) i , j , k  + ( rJ-  ' p  v., i j k + l  ., 

+ (rJ-lpvi, j-  I , k +  1 + (rJ-lpui, j-  l,k]A<Ac? (26) 

while is defined as 

(RFLUX)i,j ,k = 0.25[(rJ-'pu?i,j,k + (rJ-lpu?i+ l , j , k  f (rJ-'pwi,j-l,k 

+ ( r J - lpwi+l , j -  l , k l A q A C ?  (27) 

where i, j and k are the point indices in the 5-, q- and [-co-ordinate directions respectively. For 

i+lj,kul 

I 

XFLUX 

/ 

f R FLUX 
/ 

/ 
/ 

/ 
/ 

i i 4 k  i 

i,j,k+l 

XFLUX 

-6.5 I 
Figure 4. Flux balancing across a finite volume 
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the t-momentum frux balance the corresponding (XFLUX)i,j,k, (TFLUX)i.j,k and (RFLUX)i*j,k 
are defined as 

(XFLUX)i.j,k = @25{CrJ- '(puu + t ~ ) ] i , j , k  + CrJ-'@uu + < ~ ~ ) ] i + ~ , j , k  

+ CrJ-'(PuU + r$)li+ l,j,k+ 1 CrJ- ' ( p u u  t,#)]i,j,k+ i}AVAc, (28) 

(TFLUX)i,j,k = 025{[rJ-1(puV + q,@)]i,j,k f [rJ-'(puV + q$)]i,j,k+ 1 

+ CrJ- ' (PuV+ V$)Ii,j-l,k+~ [rJ-'(PuV+ q$)]i.j-l,k}AtAl, (29) 

(RFLUX)i,j,k = 0'25{CrJ-'(puW + c,@)]i,j,k + [rJ-'(puW+ l$)li+ 1,j.k 

L'J-'(PuW+ c$)Iit l , j ,k+~ + [rJ-'(PUW+ C$)];+13j-1,k)AqA[. (30) 

Similar expressions hold for the XFLUX, TFLUX and RFLUX fluxes of the rpwomentum, 
(-momentum and energy equations. The terms A(rJ- 'pv), A(rJ- ' p  V) and A(rJ- 'p w) of the 
RHS of equation (20) are defined as 

A(rJ-'pU) = (XFLUX)i,j,k - (XFLUX)i,j- i = lJM, j = l,JM, k = 1,KM, (31) 

A(rJ-'pV)= [(TFLUX)i+l,j,k - (TFLUX)i_l,j,k]@5, i = 2,ZMM1, j = 1,JM, k = 2,KMM1, 
(32) 

(33) 
A(rJ- ' p  W) = [(RFLUX)i,j,k+ - (RFLUX)i,j,k- J0.5, i = 2,ZMMl, j = 1, JM, k = 2,KMMl. 

The index i ranges from 1 to IM along the tangential direction. ZMMl is equal to ZM - 1 ;  see 
Figure 2. The indexj ranges from 1 to JM along the axial direction; see Figures 1 and 2. The 
index k ranges from 1 to KM along the radial direction; see Figure 1. KMMl is equal to KM - 1. 
Similar differencing is adopted for the RHS differences of equations (2 1H24). Partial derivatives 
of, say, z at the cell centres 5 = q = c = 0 are calculated by formulae such as 

z y = 0 ' 2 5 [ i . , , j , k + z i + l , j , k + Z i + l , j , k + l  + Zi,j,k+l - ( ( z i , j - l . k f z i + l . j - l . k + Z i + l , j - l . k + l  +Zi ,J- l ,k+l) l t  

(34) 

(35 )  
zq=@25[z i+ l , j , k  + zi+I,j,k+l + zi.j-l,k+l + Zi+l,j-l,k - (Zi,j,k + Zi,j,k+l + zi,j-l,k+l + 'i,j-l.k)]3 

Zy = 0.25[zi+1,j,k+l f z i t l , j ,k+l  f Zi.j-l.k+l + Zi+l , j - l .k+l  - ('i+l,j.k + Zi+l,j,k 

+ zi,j- 1 .k  + z i +  1,j- l,k)l? (36) 

with similar expressions for the partial derivatives of 0 and r with respect to 5, y~ and ( respectively. 
The spatial increments A<, Aq and [ are equal to unity and therefore have been omitted. Note 
that the first-order differencing scheme used to calculate the metrics, equations (34)-(36), is 
identical to the scheme used to approximate the axial spatial derivatives in the governing system 
of equations, equation (31). The same principles hold for the tangential and radial spatial 
derivatives but only for the rows used to describe the solid boundaries and corners. Inside the 
main flow field the spatial tangential and radial derivatives utilize second-order accuracy; see 
equations (32) and (33). If the grid conservation law is not satisfied, the numerical solution 
scheme may not reproduce uniform flow conditions. Such conditions were not encountered 
during the computer code development or during the computation of the tested flow cases. All 
information regarding turbomachinery geometries and associated metrics is calculated at once 
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and their values are stored for future computations. Linear extrapolations are used to determine 
geometry values at  rows immediately outside the main flow field. Now all fluxes and partial 
derivatives may be used in equations (20H24) to obtain the changes A(rJ- ' p ) ,  A(rJ- 'pu), 
A(rJ- 'pu) ,  A(rJ-'pw) and A(J-'pe) and thereafter the values of p, u, u, w and e for the time step 
under consideration. 

When an attempt was made to pass all changes directly into the old values in order to calculate 
the new ones, it was found necessary to utilize two different amplification factors," a factor C, 
for the estimation of p and a factor C, for the e, u, u and w. The numerical procedure is as 
follows : 

where @ stands for p and 

with C, = O.l/p~,,,,; also, 

where Y stands for e,  u, u or w and 

with C, = o.O25/(p~)~,~,,. The upper index 'n' denotes the computed result of the previous 
iteration, while the upper index '0' denotes the initially estimated flow property. The numerical 
scheme was found to be stable over a wide range of considered values of C, and C,. For all 
governing flow equations Corr;,;; is calculated as 

(41) 

Numerical experimentation has shown that the value of the factor C, should be greater than 
0.5. A typical value for C3 was set equal to 0.8. In order to maintain numerical stability,'' the 
pressure is taken from the downwind face of the cell. The downwinded pressure is corrected by 
the addition of an extra pressure. Thus 

Corr;,;; = C ,  Corr;,;: + 05(1.0 - C,)(CO~~;,;?,,~ + 

Pi,j.k = P i , j , k  + PCori,j,k, (42) 

where pcori,j+ l ,k  is the pressure correction. This additional pressure is calculated from 

PCori,j,k = 0.5c4(Pi,j- 1.k - Pi,j+ l ,k)?  (43) 

where C4 is a factor, typically 0.1. Finally, the value of pcori,j,k in equation (43) is relaxed before 
it is incorporated into equation (42). A typical relaxation factor was found to be 01. In steep 
pressure gradients, e.g. in shock wave flow regions, the value of C4 is related to the density 
gradient Ap/p .  Outside this region C, takes its usual value. It must be emphasized that the 
corrected pressure, equation (42), is applied to each of the (-, q- and (- momentum equations 
and not the true pressure. Of course, for all XFLUXs (continuity, t-momentum, q-momentum, 
z-momentum) upwinded values for velocities and energies are used, while the pressure is taken 
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from the downwind face of the finite volume involved. Thus the proper expression for equation 
(25) becomes 

(XFLUX)i,j,k = 0'25[(rJ-1PU)i,j-l,k + (rJ-lpqi+l, j- l ,k + (rJ-lPU)i+ l , j - l , k + l  

while for the (-momentum, equation (28), all indices regarding the products puU refer to the 
i, j - 1, k grid point and not the i, j ,  k one. All indices for the fluxes TFLUX and RFLUX remain 
unchanged. Finally the index j of equation (31) has been shifted by one so as to be compatible 
with the upwinding procedure. Thus equation (3 1) becomes 

A(rJ- ' p U )  = (XFLUX)i,j+ - (XFLUX)i,j,k. (45) 

As with all time-marching methods, the theoretical maximum stable time step At is determined 
by the CFL criterion 

As 
At = C5 -, 

C 

where c is the inlet stagnation speed of sound, As is the minimum of (Az)~,  A(r6)s and (AY)~ ,  
while C ,  is a factor (its value is determined after numerical experimentation) helping to stabilize 
the solution, typically 0.1. To accelerate the solution, it was found necessary to use variable time 
steps. Then the exact value of each At depends upon the geometry of the particular finite volume 
under consideration. High values of the factor C,  (>0.3 depending upon the ratio As/c) may 
lead the numerical convergence procedure into instability and later on into numerical failure 
due to the violation of the CFL criterion. In contrast, small values of C ,  may considerably delay 
the solution convergence. Numerical experimentation is also needed for the proper selection of 
C ,  in relation to C1 and C,,  since otherwise the convergence procedure may also be seriously 
delayed or end up in a wrong solution (mass is not conserved). These considerations apart, the 
numerical procedure proved to be reliable enough provided that the tested turbomachinery 
geometries were smooth. 

The governing flow equations are solved in the order mass, energy, 5-momentum, q-  
momentum and [-momentum. The input data for the description of the physical quantities and 
geometry have been kept to a minimum. Thereafter the computational grid is easily formed. 
More grid points are used in the regions of high-curvature geometry (leading or trailing edge); 
see Figures 1 and 2. An initial proper distribution of pressure, density and velocity components 
is crucial for achieving fast convergence. The new density is calculated from the continuity 
equation. Using old velocities and density, the new energy field is calculated. Thereafter the 
pressure is calculated using old velocities but new density and energy. Boundary conditions are 
applied for the inlet and outlet sections. The (-, q- and [-momentum equations are solved to 
yield the new axial, tangential and radial velocities using old u, v,  w, U, V, Wand p but new p .  
Proper boundary conditions are applied to solid and periodic surfaces. Once a steady state 
solution is obtained, the sum of mass, energy and momentum fluxes over the six faces of each 
cell will be zero and hence the conservation equations are satisfied. 

A convergence criterion based on the percentage change on the average flow field velocity over 
the previous iteration values is checked. If it has not been satisfied, the iterations continue till 
the average value drops to 0.00005%. The 000005% value proved to be a very satisfactory 
criterion. Numerical experimentation has shown that if this number was set equal to a higher 
value (one order of magnitude), the results would also have been acceptable from an engineering 
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Figure 5. Solution convergence for the thick-thin-thick aerofoil 

point of view. A second convergence criterion is also applied based on the percentage change 
in the maximum axial velocity over the previous iteration values. However, this criterion proved 
to be unsatisfactory in cases where the flow field produced local instabilities, which is a frequent 
occurrence in high-curvature geometries. 

The total number of iterations required to achieve the above convergence was about 12,000 
(see Figure 5), depending upon the geometric complexity, initial pressure distribution, type of 
flow (subsonic, transonic or supersonic) and grid density. The computational grid was formed 
by finite volumes of Az:A(r@):Ar r 1: 1: 1. Grid reduction tests for nearly all applied test cascade 
cases have shown that Az:A(r@):Ar ratios above a certain value do not essentially alter the Mach 
number distribution (maximum error less than 0.5%). A total of 40 three-dimensional arrays 
were incorporated and the maximum number of grid points of each array was set equal to 
50 x 100 x 50 (tangential x axial x radial). 

Incompressible (water) flow through turbines and pumps in either rotating or stationary 
turbomachinery elements or through other internal flow configuration systems, e.g. draft tubes, 
is a near-future extension of the current research work. 

Figure 6 .  Boundary finite volume for the hub (casing) surfaces 
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Figure 7. Boundary finite volume for the suction (pressure) surfaces 
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Figure 8. Corner boundary finite volumes 
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Figure 9. Geometry of the converging-diverging nozzle 



14 J. V. SOULIS 

BOUNDARY CONDITIONS 

Hub, casing, suction and pressure surface flows 

Figure 6 shows the boundary cell of the first computational plane k = 1 (hub) of the flow 
field. It is possible for a cell on the hub plane to be bounded on more than one face by solid 
boundaries (suction or pressure). When the flux balance is established on the secondary cell 
i ,  j ,  k, the mass flux through the solid body (hub) must be zero, i.e. Wi,j,l = 0. The treatment of 
the casing surface (k = KM) requires Wi,j,KM = 0. Similarly the mass flux through the suction 
surface ( i  = 1) must be zero, i.e. Vl, j ,k  = 0 (see Figure 7), while across the pressure surface 
(i = ZM) bM,j,k = 0. Figure 8 shows a cell bounded on two faces by solid boundaries. When 
the mass flux balance is established on the cell, the flux through the solid body of the hub 
(k = 1) and that of the pressure surface ( i  = 1) must both be zero, i.e. Wl,j,l = 0 and 
VI,j,l = 0. 

Periodic boundaries, inlet and exit 

It is assumed that the flow is identical in each blade passage of the turbomachine, so only 
one passage needs to be considered. The inlet and outlet flow regions are divided by imaginary 
surfaces extended upstream and downstream from the blade leading and trailing edges respec- 
tively. These extensions are located at angular intervals A0 = 27c/N. The application of periodic 
boundaries along the imaginary surfaces requires that all flow properties are identical at 
corresponding grid points. This condition is easily applied. At the upstream boundary the inlet 
total pressure p o l ,  total temperature To, and radial and tangential velocity components are 
specified for subsonic flow. Non-uniform radial distributions of any of these properties can also 
be applied. For supersonic inflow (not tested) it is convenient to hold the tangential velocity 

axial  distance z (m) 
Figure 10. Comparison between current method predictions and analytical solution for the Mach number distribution 

for the converging-diverging nozzle 
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component fixed and to allow the inlet direction to vary. The static pressure is calculated from 
the interior flow field. Thus 

where c6 is typically 0.25. Thereafter the absolute velocity is calculated using isentropic relation- 
ships and stagnation values. This enables the inlet velocity and contravariant velocity compo- 
nents to be properly calculated. At the downstream boundary the static pressure distribution 
is determined from the simple radial equilibrium equation (7). This pressure distribution is 
imposed as a boundary condition at the next time step. All other flow properties, i.e. velocity 
components and internal energy, are extracted from the interior flow region using linear 
extrapolations. 

COMPUTATIONAL RESULTS AND DISCUSSION 

The numerical scheme introduced in the previous sections is evaluated in this section by 
presenting a range of numerically computed examples, including subsonic, shocked and shock- 
free flow test cases. Comparisons are made against a wide range of other solutions, analytical 
or numerical, and with available experimental data in various geometry configurations. For the 
time being applications are restricted to stationary blade rows, although the numerical algorithm 
has been developed and presented in this paper to include rotating blade rows. Also, the applied 
test cases refer to the NACA 34 aerofoil section series, thus enabling the calculated flow results 
to be properly evaluated by comparing them with available measurements. 

Sect i3n "A" 12°/c t h i c k  

Sect ion"R" 6-1, t r i c k  

Seczion "A" ; 12% chick 

sec t ion  '(9"; 65 ~hhick' 

Figure 11. Dawes aerofoil thin and thick sections; all dimensions in millimetres 
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Figure 12. Dawes ‘thin-thick-thin’ aerofoii and working section arrangements; all dimensions in millimetres 
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Figure 13. Comparison of blade pressure distribution between current method predictions, potential flow predictions 
and measurements on the thin section of the 'thin-thick-thin' aerofoil 
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Figure 14. flow predictions 
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Converging-diverging nozzle 

In order to test the basic numerical scheme, a convergent-divergent nozzle is examined. Figure 
9 shows the nozzle geometry. The basic feature of the nozzle under investigation is the abrupt 
change in the geometry close to the throat region. It must be emphasized that proper simulation 
requires the computed results to be one-dimensional. This has been achieved by keeping the 
nozzle wall slope very small, while at the same time the hub and tip radii are set to large values 
(their ratio is close to unity). An exact analytical solution can be obtained from compressible 
flow tables (one-dimensional). The pressure ratio p2/po1 = 0818 produces high subsonic flow in 
the nozzle with maximum Mach number equal to 0.68. Figure 10 shows the comparison between 
the computed and analytically produced results. The agreement in the high-subsonic-flow region 
is satisfactory. A rapid change in the geometry near the throat region produced a steep change 
in the gradient of the Mach number, which has been correctly predicted by the proposed method. 
The value of the coefficient C, in the pressure correction (pcori,j,,) equation (43) was set equal 
to 0.1. As mentioned, the value of C, is multiplied by the factor 1.0 + Ap/p. Outside the shock 
region, as in the current test case, the Ap-values are negligible. 

Dawes ‘ thin-thick-thin’ aerofoil 

Dawes12 measured the surface pressure distributions on an NACA series 34 aerofoil with 
varying thickness across the span. The maximum and minimum thicknesses were chosen to be 
12.0% and 6.0% of the blade chord respectively (NACA 006-34 and NACA 0012-34). The 
aerofoil used, shown in Figure 11, was uncambered, untwisted, of constant chord across the 
span and was mounted in the centreplane of a wind tunnel with solid parallel walls at 0” 
incidence. The thickness variation was designed to give subsonic flow over the thin part of 
the span and regions of supersonic flow elsewhere. The aerofoil was tested by Dawes under 
various exit flow conditions. It was made in order to assess the effects of the sidewall 
boundary layers on the aerofoil flow field. At midspan the aerofoil was of maximum thickness 
of 12.0% of the blade chord (thick), while at each of the two tips the maximum thickness was 
only 6.0% of the chord (thin). Diagrammatic aerofoil and working section arrangements are 
shown in Figure 12. 

To perform the computational analysis, the grid mesh (8 x 56 x 8) was extended half a 
chord up and one chord downstream from the aerofoil leading and trailing edges respectively. 
Each blade pitch was equal to the width (164.0 mm) of the working space tunnel, while the blade 
span was 112.0 mm. Owing to the inherent symmetry of the thin-thick-thin blade and in 
order to save computing time, the span and pitch sizes actually used were only half of the 
above numbers. Thus the tested blade section was only one-quarter of the total available 
geometry. 

Calculated results are compared directly with available measured values as well as with 
potential flow  prediction^.'^ Figures 13 and 14 show the comparison of the current method 
predictions against those using a fully 3D potential flow solver as well as with the measurements 
taken by Dawes. The comparison refers to the static p/pol pressure ratios along the blade chord 
for the 6.0% (thin) and 12.0% (thick) sections of the blade respectively when the measured back 
pressure ratio p2/pOl was equal to 0.69. The back pressure p2/pOl = 0.66 used for the calculation 
was chosen on purpose to produce the best agreement between prediction and measurements. 
The same was true for the potential flow prediction back pressure value, which was chosen to 
be 0.673. The current method produces diffusion rather than shock on the aerofoil surface, a 
result which is supported by the measurements but not by the potential flow solver predictions. 
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Figure 15. Comparison of blade pressure distribution between current method predictions, potential flow predictions, 
time-marching predictions and measurements on the thin section of the ‘thin-thick-thin’ aerofoil at measured 
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Figure 16. Comparison of blade pressure distribution between current method predictions, potential flow predictions, 
time-marching method predictions and measurements on the thick section of the ‘thin-thick-thin’ aerofoil at measured 
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Figure 17 Comparison between measured and predicted isobars on the blade surface of the ‘thin-thick-thin’ 

aerofoil 

The main reason for the apparent discrepancies between theory and measurements, particularly 
in the first 20.0% chord aerofoil surface flow region, is attributed to viscous flow behaviour 
of the flow due to reduced turbulence (small Reynolds number) in this back pressure 
region. l 2  

Under higher-exit-flow conditions, when the experimental back pressure ratio was 0.682, a 
similar comparison is performed using C, = 0.2 (equation (43)). However, the results of 
Denton’s time-marching method are also incorporated. Figures 15 and 16 show all the above 
comparisons along the blade chord for the 6.0% (thin) and 12.0% (thick) sections of the blade 
respectively. The agreement between theories and experiment is satisfactory on either the 
‘thin’ or the ‘thick’ blade sections. The disagreement between theories and experiment in the 
region downstream of the shock is due to viscous effects in the experiment. All predictions for 
the first 20.0% chord aerofoil surface flow region agree well with themselves but disagree with 
measurements, for the reasons stated earlier on. 
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Figure 18. Dawes ‘thin-thick’ aerofoil and working section arrangements; all dimensions in millimetres 
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Figure 19. Measured isobars on the blade surface of the ‘thin-thick’ aerofoil at p2 /po ,  = 0.690 
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Figure 20. Measured isobars on the blade suface of the 'thin-thick' aerofoil at p2/po,  = 0.682 
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Figure 21. Current-method predicted isobars on the blade surface of the 'thin-thick' aerofoil at p2/po,  = 0.66 
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Figure 22. Current-method-predicted isobars on the blade surface of the 'thin-thick' aerofoil at pZ/pal = 0.64 

0 08 

LE TE 
Figure 23. Potential-flow-predi~ted'~ isobars on the blade surface of the 'thin-thick' aerofoil at p2 /po ,  = 0669 
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Measured and current-method-calculated isobars at measured p21pol = 0.682 are shown in 
Figure 17. All isobars tend to curve upwards when they reach the ‘thick’ section of the 
aerfoil, thus giving evidence of the 3D nature of the flow. The good agreement between 
theory and measurements all over the flow field is apparent. Note the locations of the sonic lines. 

Dawes ‘thin-thick ’ aerofoil 

The aerofoil used, shown in Figure 11, is of the NACA series 34 with varying thickness across 
the span. The working section arrangement is shown in Figure 18. The blade span was again 
110.0 mm. At one tip the blade thickness was 6.0% of the blade chord (thick), while at the other 
end the blade thickness has been increased to 12.0% of the blade chord (thick). Again each blade 
pitch was equal to the width (162 mm) of the working space tunnel. The thickness variation was 
designed to give subsonic flow over the thin part of the span and regions of supersonic flow 
elsewhere. 

Reported measurements have been presented as contours of constant pressure plotted in the 
plane of the aerofoil. Two back pressure ratios have been tested, p2/pol  = 0.690 and 0-682, and 
the measured isobars are shown in Figures 19 and 20 respectively. Calculations were performed 
on a finite volume grid of 8 x 56 x 8 which was extended half a chord upstream and one chord 
downstream from the blade leading and trailing edges respectively. The calculations used 
C, = 0.4 and back pressure ratios p21pol = 066 and 0.64 which were lower than those measured 
in order to obtain the ‘best’ comparison. This was achieved by choosing the location of the 
shock wave to be located in the same place on the aerofoil as in the experiments. These results 
are shown in Figures 21 and 22 respectively. There is a significant 3D flow structure upstream 
from the shock wave, since the isobars are curved across the span, and this has been clearly 

LE 
Figure 24. Potential-flow-predi~ted’~ isobars on the blade surface of the ‘thin-thick’ aerofoil at pz/pol  = 0.667 
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Figure 25. Dawes swept aerofoil and working section arrangements; all dimensions in millimetres 

predicted by the method. The shock strength increases from the thin to the thick section of the 
aerofoil span. The shock strength and location are in very good agreement with the measure- 
ments. Finally, Figures 23 and 24 show the potential flow predictions for the above problem 
using p2/po1 = 0-669 and 0.667. 

Dawes 30" swept aerofoil 

The final test case was a swept aerofoil, also designed by Dawes, with chord and thickness 
constant across the span but swept at 30" between the working section sidewalls. The aerofoil 
geometry and working section arrangements are shown in Figure 25. 

Contours of measured pressures are plotted in the plane of the aerofoil isobars at p2/pol = 
0-621 and are shown in Figure 26. Isobar contours are inclined towards the tip trailing edge, as 
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Figure 26 Measured isobars on the blade surface of the 30" swept aerofoil at p z / p o ,  = 0 621 

Figure 27. Current-method-predicted isobars on the blade surface of the 30" swept aerofoil at p2 /po ,  = 0.623 
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Figure 28. Convergence history for the 'thin-thick-thin' aerofoil using various values for the parameters C ,  and C, 

is clearly shown by measured and calculated results. The highest flow field Mach numbers are 
attained at the tip of the aerofoil very close to the blade leading edge region. An embedded 
transonic region extends from tip to root. Measured isobars also show the formation of another 
supersonic pocket at about 60.0% of the blade chord at the root section of the aerofoil. 
Calculated contours at p2 /po l  = 0 6 2 3  are shown in Figure 27. 
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Figure 29. 
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Figure 30. C, effects on the pressure ratio distribution along the axial distance of the thick section of the 'thin-thick-thin' 

aerofoil 

An explanation of the flow field development round the swept aerofoil, also based on the 
calculated results, suggests that upstream from the aerofoil leading edge a pressure gradient is 
generated transverse to the incoming flow which increases the pressure upstream from the root 
leading edge region. This means that upstream from the tip leading edge region the flow must 
accelerate to maintain continuity. Thus the flow becomes faster near the tip than the root section 
of the aerofoil. 
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Figure 31. C,  effects on the convergence history of the 'thin-thick-thin' aerofoil 
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ANALYSIS OF THE FACTORS C , ,  C, ,  C, ,  C4, C, AND c6 

The Dawes ‘thin-thick-thin’ aerofoil was chosen in order to demonstrate the performance of 
the various factors C , ,  C,, C3,  C,, C ,  and c6 used in the computations. Figure 28 shows the 
convergence history for the first 500 iterations using various C,- and C,-values, equations (38) 
and (40); of course, the solution has not yet converged (a full convergence history for the 
converging-diverging nozzle is shown in Figure 5 using C ,  = 0.1 and C2 = 0025). From 
Figure 28 it is evident that using high values of C ,  and C,, the solution is slow in achieving 
convergence. The ‘amplification’ is more than enough and at even higher values the solution 
might not converge at all. The final solution is not affected by the choice of C ,  and C, 
(not shown). 

Figure 29 shows the effects of C,,  equation (41), on the ratio p/p, ,  along the axial distance 
of the tested aerofoil section. The results refer to the thick section. Three values of C ,  are used, 
namely 0.50, 0.75 and 0.90. All computations performed in the current research work use 0-75. 
From Figure 29 it is evident that up to the 65.0% axial distance all three solutions are close to 
each other. From that region onwards a diffusion (shock) region is present and the three solutions 
show some differences from each other. The 0.50 and 090 solutions are very close one to another 
and both solutions are comparable with the measurements. 

Figure 30 shows the effects of C4, equation (43), on the pressure distribution over the 
thick section of the tested ‘thin-thick-thin’ aerofoil. The predicted results using C4 = 0 5  
are close to the measured values, particularly in the high-diffusion region of the tested aerofoil. 
Predictions using C4 = 0.2, which is a typical value for the current tests, underestimate the 
pressure ratio in the diffusion region. At even higher C4-values (= 1-0) the solution breaks 
down. 

Figure 31 shows the effects on the convergence history using various C,-values, equation (46). 
For the applied initial flow conditions a C,-value of 0.2 failed to achieve convergence. Using 
C ,  = 01, the solution converges faster (comparison is made against Cs = 0.05). 

Finally, in Figure 32 the effects of using two different values (0-25 and 1.0) of c6, equation 
(47), are shown. The final solution is not affected. 
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Figure 32. C, effects on the pressure ratio distribution along the axial distance of the thick section of the ‘thin-thick-thin’ 
aerofoil 
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CONCLUSIONS 

An accurate and efficient numerical method for complex geometry turbomachinery blade rows 
has been developed. The code is based on a simple body-conforming grid system. It utilizes a 
simple time integration technique, while artificial viscosity is provided via a simple pressure 
correction formula. The programme has been tested on a variety of turbomachinery problems 
revealing 3D flow structure. Predictions for three 3D flows have been presented. Comparisons 
with measurements as well as with other numerical solutions demonstrate the accuracy and 
computational efficiency of the method. Main features of the flow are reasonably well predicted, 
even using comparatively coarse grids. However, much finer grids would be needed to resolve 
details of the complex leading and trailing edge flow regions. Whenever convergence problems 
have occurred, they have always been traced to bad grids and have vanished when the grid was 
refined. Future work will involve expanding the code to predict steady, three-dimensional, 
viscous flows in hydraulic machines (draft tubes, turbines, pumps). 
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